40 research outputs found

    Application of optical single-sideband laser in Raman atom interferometry

    Get PDF
    A frequency doubled I/Q modulator based optical single-sideband (OSSB) laser system is demonstrated for atomic physics research, specifically for atom interferometry where the presence of additional sidebands causes parasitic transitions. The performance of the OSSB technique and the spectrum after second harmonic generation are measured and analyzed. The additional sidebands are removed with better than 20 dB suppression, and the influence of parasitic transitions upon stimulated Raman transitions at varying spatial positions is shown to be removed beneath experimental noise. This technique will facilitate the development of compact atom interferometry based sensors with improved accuracy and reduced complexity

    Polychromatic atom optics for atom interferometry

    Get PDF

    One-dimensional photonic band gaps in optical lattices

    Full text link
    The phenomenon of photonic band gaps in one-dimensional optical lattices is reviewed using a microscopic approach. Formally equivalent to the transfer matrix approach in the thermodynamic limit, a microscopic model is required to study finite-size effects, such as deviations from the Bragg condition. Microscopic models describing both scalar and vectorial light are proposed, as well as for two- and three-level atoms. Several analytical results are compared to experimental data, showing a good agreement

    RealFill: Reference-Driven Generation for Authentic Image Completion

    Full text link
    Recent advances in generative imagery have brought forth outpainting and inpainting models that can produce high-quality, plausible image content in unknown regions, but the content these models hallucinate is necessarily inauthentic, since the models lack sufficient context about the true scene. In this work, we propose RealFill, a novel generative approach for image completion that fills in missing regions of an image with the content that should have been there. RealFill is a generative inpainting model that is personalized using only a few reference images of a scene. These reference images do not have to be aligned with the target image, and can be taken with drastically varying viewpoints, lighting conditions, camera apertures, or image styles. Once personalized, RealFill is able to complete a target image with visually compelling contents that are faithful to the original scene. We evaluate RealFill on a new image completion benchmark that covers a set of diverse and challenging scenarios, and find that it outperforms existing approaches by a large margin. See more results on our project page: https://realfill.github.ioComment: Project page: https://realfill.github.i

    Cold Atom Space Payload Atmospheric Drag Mission (CASPA-ADM)

    Get PDF
    To gain better understanding of the upper atmospheric dynamics requires more accurate determination of the mass density distribution in the thermosphere. Improved measurements of drag, by means of satellite accelerometery, can be used to more precisely determine this distribution. In addition, atmospheric drag in Low Earth Orbit (LEO) is particularly of interest for climate modelling, weather forecasting and satellite orbit prediction. RAL Space, Teledyne-e2v and the University of Birmingham are developing a Cold Atom Space Payload Atmospheric Drag Mission (CASPA-ADM). The aim of the project, supported by the UK Centre for Earth Observation Instrumentation (CEOI), is to develop a technology demonstrator based on Cold Atom Interferometry (CAI) to take sensitive measurements of atmospheric drag. The underlying CAI technology has been previously flown on the Chinese Space Station, the International Space Station, and in sounding rockets. However, it has not yet been used as the fundamental sensor technology in a free flight space mission. The team is producing a space-suitable accelerometer that can be embedded in small satellites such as 16U CubeSats and are addressing the engineering challenges associated with space qualification and miniaturisation, while keeping the performance level of systems with larger Size, Weight and Power (SWaP)

    A Dielectric Metasurface Optical Chip for the Generation of Cold Atoms

    Get PDF
    Compact and robust cold atom sources are increasingly important for quantum research, especially for transferring cutting-edge quantum science into practical applications. In this letter, we report on a novel scheme that utilizes a metasurface optical chip to replace the conventional bulky optical elements used to produce a cold atomic ensemble with a single incident laser beam, which is split by the metasurface into multiple beams of the desired polarization states. Atom numbers  107~10^7 and temperatures (about 35 μ{\mu}K) of relevance to quantum sensing are achieved in a compact and robust fashion. Our work highlights the substantial progress towards fully integrated cold atom quantum devices by exploiting metasurface optical chips, which may have great potential in quantum sensing, quantum computing and other areas

    Magneto-optical trapping in a near-suface borehole

    Get PDF
    Borehole gravity sensing can be used in a number of applications to measure features around a well, including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors, based on atom interferometry, have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (60 ± 0.1) mm at its widest point and a length of (890 ± 5) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate how in-borehole gravity surveys are performed. During the survey, the system generated, on average, clouds of (3.0 ± 0.1) × 105 87Rb atoms with the standard deviation in atom number across the survey observed to be as low as 8.9 × 104

    Magneto-optical trapping in a near-surface borehole

    Full text link
    Borehole gravity sensing can be used in a number of applications to measure features around a well including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors based on atom interferometry have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (60±0.160\pm0.1) mm at its widest point and a length of (890±5890\pm5) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate an in-borehole gravity surveys are performed. During the survey the system generated on average clouds of (3.0 ±0.1)×105\pm 0.1) \times 10^{5} 87^{87}Rb atoms with the standard deviation in atom number across the survey observed to be as low as 9×1049 \times 10^{4}
    corecore